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The Computational Content

In the arithmetical world, any bounded formula leads to its own canonical
computational task whose solvability is guaranteed by the truth of the
universal closure of the formula itself.

This task is roughly defined as:

The computational content of A

Read the free variables, ~x , as the parameters, and then alternately read the
universal quantifiers of A(~x) to witness its existential quantifiers in a way
that the resulting statement becomes true.

For instance consider the formula

A(x) = ∀y ≤ t(x)∃z ≤ s(x)∀w ≤ r(x)B(x , y , z ,w)

where B is a quantifier-free formula in the language of arithmetic and t, s
and r are computable function symbols. Then the computational content
of this sentence is the problem of reading x and y ≤ t(x) to find z ≤ s(x)
such that for any w ≤ r(x), B(x , y , z ,w).
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Proof Mining

Clearly, there exists a simple brute-force algorithm to solve all these
problems. The idea is simple: Since everything is bounded, it is just
enough to check all the possibilities to find the needed witnesses.

The algorithm is based on the truth of ∀~xA(~x). But what if we also
have a proof of ∀~xA(~x) in some theory T? Following Kreisel:

Proof Mining

Does a T -proof of a bounded formula lead to a more clever algorithm than
the mentioned blind brute-force?

The answer is yes and this talk is devoted to show how. For this purpose,
we will explain a general extraction technique applicable to any bounded
theory of arithmetic. For more powerful unbounded theories like PA, there
is a similar technique based on the ordinal analysis of the theory which we
have to avoid here.
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Reductions

Definition

Let A,B are two bounded formulas in the form

A = ∀y1 ≤ t1(x)∃y2 ≤ t2(x) . . .Qnyn ≤ tn(x)A∗(x , y1, . . . , yn)

and

B = ∀z1 ≤ s1(x)∃z2 ≤ s2(x) . . .Qnzn ≤ sn(x)B∗(x , z1, . . . , zn)

Then we say B is reducible to A and we write A ≥ B iff there exists a
sequence of terms, alternately reading the universal variables of B to
witness the universal quantifiers in A and then reading the existential
variables in A to witness the existential variables in B. If the fact is
provable in a base theory B, the reduction is called B-verifiable.
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Reductions

Therefore, a reduction from B to A means a term-based coordinate change
to reduce the computational task of B to the computational task of A.

Let us illuminate the definition by one example:

Example

A reduction

[∀y ≤ t(x)∃z ≤ s(x)A∗(x , y , z)] ≥ [∀u ≤ p(x)∃v ≤ q(x)B∗(x , u, v)]

is a pair of terms (a(x , u), b(x , u, z)) such that [ignoring the bounds!]

N � A∗(x , a(x , u), z)→ B∗(x , u, b(x , u, z)).

It is B-verifiable iff B ` A∗(x , a(x , u), z)→ B∗(x , u, b(x , u, z)).
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The Main Theorem (informal)

Let A(x),B(x) be two bounded formulas with some certain complexity, T
a bounded theory of arithmetic based on the induction on the bounded
formulas in the same complexity class and B ⊆ T be a base theory. Then
TFAE:

T ` A⇒ B

There exists a term t(x) and a sequence of the length t(x) of
B-verifiable computational reductions beginning by A and ending in B.

Why can it be considered as an algorithm? First observe that if we put
A = > then we have

T ` B

There exists a term t(x) and a sequence of the length t(x) of
B-verifiable computational reductions beginning by the zero
witnessing problem and ending in B.
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The Canonical Algorithm

Secondly, note that this sequence of reductions leads to a canonical
algorithm:

Example

Ignoring the bounds, let Ci (x) = ∀yi∃ziDi (x , yi , zi ) be a sequence of
formulas with reductions Fi in between, where Di ’s are quantifier-free
formulas. Then the sequence of reductions

∀y0∃z0D0(x , y0, z0) ≥F0 . . . ≥Ft(x)−1 ∀yt(x)∃zt(x)Dt(x)(x , yt(x), zt(x))

leads to the following canonical algorithm: First read yt(x), then use the
reduction Ft(x)−1 to find yt(x)−1. Do the same till reaching y0. Then find
z0 [which is zero for the zero witnessing] and then use the reduction F0 to
find z1 and do it again till reaching zt(x). This is what we wanted to find.
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B.

To state this theorem more formally, we need the following ingredients:

The language

The hierarchy of bounded formulas

The bounded theory of arithmetic

The reduction

The flow
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The language

Definition (the language)

Let L be a first order language of arithmetic extending

{0, 1,+,−, ·, b ·
·
c,≤}

By R we mean the first order theory consisting of the axioms of
commutative discrete ordered semirings (the usual axioms of commutative
rings minus the existence of additive inverse plus the axioms to state that
≤ is a total discrete order such that < is compatible with addition and
multiplication with non-zero elements), plus the following defining axioms
for − and b ··c:

(x ≥ y → (x − y) + y = x) ∧ (x < y → x − y = 0)

((y + 1) · b x

y + 1
c ≤ x) ∧ (x − (y + 1) · b x

y + 1
c < y + 1)
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Complexity Classes

Definition (the hierarchy)

The hierarchy {Σk ,Πk}∞k=0 is defined as the following:

(i) Π0 = Σ0 is the class of all quantifier-free formulas.

(ii) If B(x) ∈ Σk then ∃x ≤ t B(x) ∈ Σk and ∀x ≤ t B(x) ∈ Πk+1.

(iii) If B(x) ∈ Πk then ∀x ≤ t B(x) ∈ Πk and ∀x ≤ t B(x) ∈ Σk+1.

Example

Define L as the language consisting of all poly-time functions as
function symbols. Then Σk characterizes the k-th level of the
polytime hierarchy, Σp

k .

As another example, if we add the exponential function to the usual
language of arithmetic, then the hierarchy {Σk ,Πk}∞k=0 collapses to
its very first level Σ0 = Π0.
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Bounded Arithmetic

Definition (the theory)

Let A ⊇ R be a set of quantifier-free axioms and Φ ∈ {Σk ,Πk}∞k=0. By
the first order bounded arithmetic, B(Φ,A) we mean the theory in the
language L which consists of axioms A, and the Φ-induction axiom, i.e.

A(0) ∧ ∀x(A(x)→ A(x + 1))→ ∀xA(x)

where A ∈ Φ.

Example

With our definition of bounded arithmetic, different kinds of theories can
be considered as bounded theories of arithmetic, for instance IEk , IUk , T k

n ,
I∆0(exp) and PRA are just some of the well-known examples.
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Computational Reductions

Definition (the reductions)

Let A(~x) and B(~x) be some formulas in Πk and {Fi}ki=1 be a sequence of
terms. By recursion on k , we will define F = {Fi}ki=1 as a deterministic
Πk -reduction from B(~x) to A(~x) and we will denote it by A(~x) ≥F B(~x)
when:

(i) If A(~x),B(~x) are in Π0, we say that the empty sequence of functions
is a reduction from B to A iff B ` A(~x)→ B(~x).

(ii) If A = ∀~u ≤ ~p(~x)C (~x , ~u), B = ∀~v ≤ ~q(~x)D(~x , ~v) and F = {Fi}k+1
i=1 is

a sequence of terms, then A(~x) ≥F B(~x) iff

Fk+1(~x , ~v) ≤ ~p(~x)→ C (~x ,Fk+1(~x , ~v)) ≥F̂ ~v ≤ ~q(~x)→ D(~x , ~v)

where F̂ = {Fi}ki=1.
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Computational Reductions

Definition

(iii) If A = ∃~u ≤ ~p(~x)C (~x , ~u), B = ∃~v ≤ ~q(~x)D(~x , ~v) and F = {Fi}k+1
i=1 is

a sequence of terms, then A(~x) ≥F B(~x) iff

~u ≤ ~p(~x) ∧ C (~x , u) ≥F̂ Fk+1(~x , ~u) ≤ ~q(~x) ∧ D(~x ,Fk+1(~x , ~u))

where F̂ = {Fi}ki=1.

We say B is (Πk ,B)-reducible to A and we write A ≥(Πk ,B) B, when there
exists a sequence of terms F such that A ≥F B.
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Definition (the flow)

Let A(~x),B(~x) ∈ Πk . A (Πk ,B)-flow from A(~x) to B(~x) is the following
data: A term t(~x), a formula H(u, ~x) ∈ Πk and sequences of terms E0, E1,
G0, G1 and F (u) such that the following statements are provable in B:

(i) H(0, ~x) ≡(E0,E1) A(~x).

(ii) H(t(x), ~x) ≡(G0,G1) B(~x).

(iii) ∀u < t(x)H(u, ~x) ≥F (u) H(u + 1, ~x).

If there exists a (Πk ,B)-flow from A(~x) to B(~x) we will write
A(~x)B(Πk ,B) B(~x). Moreover, if Γ and ∆ are sequents of formulas in Πk ,
by ΓB(Πk ,B) ∆ we mean

∧
ΓB(Πk ,B)

∨
∆.

The Main Theorem (A.A.)

Let Γ(~x) ∪∆(~x) ⊆ Πk and A ⊆ B ⊆ B(Πk ,A). Then
B(Πk ,A) ` Γ(~x)⇒ ∆(~x) iff ΓB(Πk ,B) ∆.
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The Main Lemma

The following lemma establishes a high-level calculus for the flows:

The Main Lemma

(Conjunction left.) If Γ,AB∆ then Γ,A ∧ B B∆ and Γ,B ∧ AB∆.

(Conjunction right.) If ΓB∆,A and ΓB∆,B then ΓB∆,A ∧ B.

(Disjunction left.) If Γ,AB∆ and Γ,B B∆ then Γ,A ∨ B B∆.

(Disjunction right.) If ΓB∆,A then ΓB∆,A ∨ B and ΓB∆,B ∨ A.

(Cut.) If ΓB∆,A and Γ′,AB∆′ then Γ, Γ′ B∆,∆′.

(Induction.) If Γ,A(x)B∆,A(x + 1) then Γ,A(0)B∆,A(t).

(Universal left.) If Γ,A(t)B∆ then Γ, t ≤ s,∀y ≤ s A(y)B∆.

(Universal right.) If Γ, y ≤ s B∆,A(y) then ΓB∆, ∀y ≤ s A(y).

Amir Akbar Tabatabai Proof Mining in Bounded Arithmetic July 19, 2018 15 / 21



Main Lemma

(Existential left.) If Γ, y ≤ s,A(y)B∆ then Γ, ∃y ≤ s A(y)B∆.

(Existential right.) If ΓB∆,A(t) then Γ, t ≤ s B∆,∃y ≤ s A(y).

(Contraction left.) If Γ,A,AB∆ then Γ,AB∆.

(Contraction right.) If ΓB∆,A,A then ΓB∆,A.

The crucial cases are the quantifier and the contraction rules.

To have an
idea, let us think about the contraction rule:

ΓB ∃y ≤ tA(y),∃y ≤ tA(y)
cL

ΓB ∃y ≤ tA(y)

To admit this rule it seems reasonable to prove the following reduction

[∃y ≤ tA(y) ∨ ∃y ≤ tA(y)] ≥ [∃y ≤ tA(y)]

But this means that we have to choose between two witnesses which is
not an obvious task without knowing the value of A(y). Note that finding
the value of a complex formula A(y) could be costly or even impossible via
the terms of the language.

Amir Akbar Tabatabai Proof Mining in Bounded Arithmetic July 19, 2018 16 / 21



Main Lemma

(Existential left.) If Γ, y ≤ s,A(y)B∆ then Γ, ∃y ≤ s A(y)B∆.

(Existential right.) If ΓB∆,A(t) then Γ, t ≤ s B∆,∃y ≤ s A(y).

(Contraction left.) If Γ,A,AB∆ then Γ,AB∆.

(Contraction right.) If ΓB∆,A,A then ΓB∆,A.

The crucial cases are the quantifier and the contraction rules. To have an
idea, let us think about the contraction rule:

ΓB ∃y ≤ tA(y),∃y ≤ tA(y)
cL

ΓB ∃y ≤ tA(y)

To admit this rule it seems reasonable to prove the following reduction

[∃y ≤ tA(y) ∨ ∃y ≤ tA(y)] ≥ [∃y ≤ tA(y)]

But this means that we have to choose between two witnesses which is
not an obvious task without knowing the value of A(y). Note that finding
the value of a complex formula A(y) could be costly or even impossible via
the terms of the language.

Amir Akbar Tabatabai Proof Mining in Bounded Arithmetic July 19, 2018 16 / 21



Computability of Characteristic Functions

To solve this problem, we will simulate the decision problem of A by a flow
of reductions:

Theorem (Computability of Characteristic Functions)

Let {Σk ,Πk}∞k=0 be a hierarchy and B has characteristic terms for all
quantifier-free formulas, then for any Ψ ∈ {Σk ,Πk} if A(~x) ∈ Ψ then

B(Σk+1,B) ∃i ≤ 1 [(i = 1→ A) ∧ (i = 0→ ¬A)]

It reduces the problem of deciding A to the problem of deciding the value i
which is definitely much easier to handle by terms. The idea behind the
theorem is transforming the usual brute-force algorithm [open all
quantifiers and check all the possibilities] to a sequence of simple
term-based reductions.
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The proof of the Main Theorem

The Main Theorem (A.A.)

Let Γ(~x) ∪∆(~x) ⊆ Πk and A ⊆ B ⊆ B(Πk ,A). Then TFAE:

B(Πk ,A) ` Γ(~x)⇒ ∆(~x)

ΓB(Πk ,B) ∆.

Proof Sketch of the Main Theorem

If ΓB(Πk ,B) ∆ then there exists a formula H(u, ~x) ∈ Πk such that
H(i + 1, ~x) is reducible to H(i , ~x) provable in B. Hence
B ` H(i , ~x)⇒ H(i + 1, ~x). Since B ⊆ B(Πk ,A) and we have
Πk -induction in B(Πk ,A) we have B(Πk ,A) ` H(0, ~x)⇒ H(t(~x), ~x)
hence B(Πk ,A) ` A⇒ B.

For the other direction, we have to show that
the flow interpretation admits all the rules in the sequent calculus of the
bounded theory of arithmetic which is nothing but the content of the main
lemma.
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Applications I

For the first application, consider the hierarchy {IUk}∞k=0 written in the
language augmented with subtraction and division. These are the
fragments of the theory I∆0 that are related to the computational world of
linear time hierarchy. Moreover, consider the class of all functions
constructed from zero, projections and closed under successor, addition,
production, subtraction and division and call it R:

Theorem

Let Γ(~x) ∪∆(~x) ⊆ Uk , then IUk ` Γ(~x)⇒ ∆(~x) iff ΓB(Uk ,R) ∆.

The second condition means that there exists a sequence of length t ∈ R
of formulas in Uk beginning from

∧
Γ ending with

∨
∆ such that each

formula is reducible to its successor provably in R and using just the
functions in R.
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Applications II

Theorem

Let Γ(~x) ∪∆(~x) ⊆ Π̂b
k(#n), then T k

n ` Γ(~x)⇒ ∆(~x) iff

ΓB(Π̂b
k (#n),PV(#n)) ∆. Specifically, for n = 2, T k

2 ` Γ(~x)⇒ ∆(~x) iff

ΓB(Π̂b
k ,PV) ∆.

The second condition in the latter case means that there exists a sequence
of length 2p(|~x |) of formulas in Πb

k beginning from
∧

Γ ending in
∨

∆ such
that each formula is reducible to its successor provably in PV and using
just the polynomial time computable functions.

This theorem provides
another characterization for all total NP search problems of T k

2 as well as
all higher order search problems in these theories. In fact, the very notion
of a flow as we explained here is a generalization of higher PLS problems
of Buss and Beckmann on the one hand and Skelly and Thapen’s game
induction principles, on the other. Both of these problems have been
successfully used to characterize the search problems of the hierarchy T k

2 .
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Thank you for your attention!
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